Christopher D. Ball, Ian C. MacGregor, Elizabeth A. Hanft Battelle

Frank C. De Lucia Ohio State Univ.

David M. Shelow EPA/OAR/OAQPS

Assessing the Feasibility of Measuring Carbonyls in Ambient Air with a Submillimeter Wave Spectroscopic Sensor

13 August 2014

Introduction

- Submillimeter wave (SMMW) spectroscopic gas sensor
 - Developed by Battelle and OSU for DARPA

- Offers significant gains in sensitivity, selectivity, and speed
- Adaptable to air pollutant monitoring applications
 - Direct detection of formaldehyde, acrolein, NO₂, etc.
 - Simultaneous detection of multiple criteria pollutants
 - Reduced reliance on lab-based sample analysis

Overview

- Advantages of SMMW spectroscopy
- DARPA MACS sensor
- Relevance to gaseous pollutant detection
- EPA/OAQPS feasibility study
- Path forward, technology development roadmap

SMMW Spectroscopy

- High resolution SMMW spectroscopy exploits molecular rotational transitions
- Uniqueness and redundancy of signatures provide near-absolute specificity
 - Optimal pressure ~10 mTorr Doppler limit
 - Small number of molecules required for detection
- Laboratory SMMW spectroscopy is very mature (50+ years)

Example Spectra

Advantages of SMMW Sensor

- Technology now available for small (1 ft³) system (100-600 GHz)
- Potential for very high sensitivity (ppt) if incorporate preconcentration
- Very high specificity → Low false alarm rate
- Fast measurement and analysis (sec to min)
- Broad range of target analytes

Neese, et al., "Compact Submillimeter/Terahertz Gas Sensor with Efficient Gas Collection, Preconcentration, and ppt Sensitivity," *IEEE Sensors Journal* vol. 12, pp. 2565-2574, 2012

13 August 2014

6

Disadvantages of SMMW Sensor

- System cost currently high for pollution monitoring applications (> \$100k)
 - Continued tech development will drive down cost
- Dipole moment required

7

- Difficult to detect large/complex molecules
 - Additional research required to incorporate alternative techniques
- Some smaller molecules (NH₃, HF, etc.) require high frequency sources (600 GHz)

DARPA Mission Adaptable Chemical Sensor (MACS) Program

- Met or exceeded all DARPA metrics
 - Sensitivity: ~ppt
 - Selectivity: simultaneous detection of 30+ gases
 - False alarm rate: < 10⁻¹⁰
 - Speed: 10 min
 - Size: 1 cubic foot

Detection of Gaseous Pollutants

- Ability to detect carbonyls, NOx, SOx, etc.
- Simultaneous detection of multiple pollutants
- Sufficient sensitivity for air monitoring (ppb-ppt)
- Near real-time monitoring capability
- Maturation of technology expected to enable development of ~\$20k system

Formaldehyde

Spectral data from NASA JPL catalog:

http://spec.jpl.nasa.gov/

EPA/OAQPS Feasibility Study

- Objective
 - Investigation of SMMW detection limits for target air toxic compounds (formaldehyde, acrolein, acetaldehyde)
 - Investigation of preconcentration to enhance the sensitivity of the SMMW sensor for ambient air measurements

SMMW Detection Limits (OSU)

- Test planning
- Spectroscopic measurement of three carbonyls: formaldehyde, acrolein, and acetaldehyde
 - Standard spectrometer
 - Neat and diluted samples
- Estimation of method detection limit (MDL)
 - Assume no preconcentration
 - Correlate with relevant measurement parameters (resolution, detector sensitivity, cell conditions)

Preconcentration Study (Battelle)

- Literature search on preconcentration approaches for carbonyls
- Laboratory characterization of two approaches
 - Based on MACS sorbent characterization effort
 - Standard GC/MS methods
- Concentration efficiency estimation for each identified approach
- Estimation of overall SMMW MDL (spectra + preconcentration)

Status

- Test planning complete (draft QAPP)
- Theoretical calculations of SMMW sensitivity underway
- Literature search for preconc methods complete
 - Cryotrap
 - Semipermeable membranes
 - Carbon Nano Tubes (CNTs), functionalized and nonfunctionalized
 - Functionalized silicas
 - Sorbents (traditional, emerging, non-traditional)

Future Technology R&D

- Spectrometer cost reduction and miniaturization
 - Current MACS technology uses robust commercial MMW multipliers and amplifiers that cost ~\$70K
 - Advances in wireless communications technology moving toward chip-level devices that can produce 100 GHz and cost ~\$100
 - Leveraging advances in CMOS technology funded by Semiconductor Research Corp
 - Following advancements at IBM to extend current Tx/Rx of 60 GHz to ~240 GHz

Sensor Development Roadmap

Conclusion

- SMMW sensor provides flexibility to detect multiple air pollutants simultaneously in near real-time
- Concept proven by meeting performance metrics on DARPA MACS program
- Development of ruggedized, autonomous, inexpensive sensor is feasible
- Can broaden scope of air monitoring, fill gaps in continuous monitoring of formaldehyde and acrolein, offer direct NO₂ detection, and reduce labbased sample analysis costs

Battelle

The Business of Innovation

800-201-2011 Solutions@battelle.org www.battelle.org

19 13 August 2014